Super-Samples from Kernel Herding
نویسندگان
چکیده
We extend the herding algorithm to continuous spaces by using the kernel trick. The resulting “kernel herding” algorithm is an infinite memory deterministic process that learns to approximate a PDF with a collection of samples. We show that kernel herding decreases the error of expectations of functions in the Hilbert space at a rateO(1/T )which is much faster than the usual O(1/ √ T ) for iid random samples. We illustrate kernel herding by approximating Bayesian predictive distributions.
منابع مشابه
Optimally-Weighted Herding is Bayesian Quadrature
Herding and kernel herding are deterministic methods of choosing samples which summarise a probability distribution. A related task is choosing samples for estimating integrals using Bayesian quadrature. We show that the criterion minimised when selecting samples in kernel herding is equivalent to the posterior variance in Bayesian quadrature. We then show that sequential Bayesian quadrature ca...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملSuper-resolution of Defocus Blurred Images
Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...
متن کاملCompact Convex Projections
We study the usefulness of conditional gradient like methods for determining projections onto convex sets, in particular, projections onto naturally arising convex sets in reproducing kernel Hilbert spaces. Our work is motivated by the recently introduced kernel herding algorithm which is closely related to the Conditional Gradient Method (CGM). It is known that the herding algorithm converges ...
متن کاملOn the Equivalence between Herding and Conditional Gradient Algorithms
We show that the herding procedure of Welling (2009b) takes exactly the form of a standard convex optimization algorithm— namely a conditional gradient algorithm minimizing a quadratic moment discrepancy. This link enables us to invoke convergence results from convex optimization and to consider faster alternatives for the task of approximating integrals in a reproducing kernel Hilbert space. W...
متن کامل